Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Plant Signaling & Behavior, 11(8), p. e26364

DOI: 10.4161/psb.26364

Links

Tools

Export citation

Search in Google Scholar

In silico selection ofArabidopsis thalianaecotypes with enhanced stress tolerance

Journal article published in 2013 by Christian M. Prasch, Uwe Sonnewald ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Climate models predict increased occurrences of combined abiotic and biotic stress. Unfortunately, most studies on plant stress responses include single or double stress scenarios only. Recently, we established a multi-factorial system in Arabidopsis thaliana (Arabidopsis) to study the influence of simultaneously applied heat, drought, and virus. Our transcriptome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Combined heat and drought stress reduced expression of defense genes and genes involved in R-mediated disease responses, which correlated with increased susceptibility of Arabidopsis to virus infection. Eleven genes were found to be differentially regulated under all stress conditions. Assuming that regulated expression of these genes is important for plant fitness, Arabidopsis ecotypes were clustered according to their expression. Interestingly, ecotypes showing a close correlation to stressed Col-0 prior stress treatment showed improved growth under stress conditions. This result suggests a functional relevance of these genes in stress tolerance.