Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 13(107), p. 5869-5874, 2010

DOI: 10.1073/pnas.1001777107

Links

Tools

Export citation

Search in Google Scholar

Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The distribution and activities of morphogenic signaling proteins such as Hedgehog (Hh) and Wingless (Wg) depend on heparan sulfate proteoglycans (HSPGs). HSPGs consist of a core protein with covalently attached heparan sulfate glycosaminoglycan (GAG) chains. We report that the unmodified core protein of Dally-like (Dlp), an HSPG required for cell-autonomous Hh response in Drosophila embryos, alone suffices to rescue embryonic Hh signaling defects. Membrane tethering but not specifically the glycosylphosphatidylinositol linkage characteristic of glypicans is critical for this cell-autonomous activity. Our studies further suggest divergence of the two Drosophila and six mammalian glypicans into two functional families, an activating family that rescues cell-autonomous Dlp function in Hh response and a family that inhibits Hh response. Thus, in addition to the previously established requirement for HSPG GAG chains in Hh movement, these findings demonstrate a positive cell-autonomous role for a core protein in morphogen response in vivo and suggest the conservation of a network of antagonistic glypican activities in the regulation of Hh response.