Published in

Portland Press, Biochemical Journal, 2(349), p. 481-487, 2000

DOI: 10.1042/bj3490481

Portland Press, Biochemical Journal, 2(349), p. 481

DOI: 10.1042/0264-6021:3490481

Links

Tools

Export citation

Search in Google Scholar

Evidence that 12-lipoxygenase product 12-hydroxyeicosatetraenoic acid activates p21-activated kinase.

Journal article published in 2000 by Yeshao Wen, Jiali Gu, Ulla G. Knaus, Lisa Thomas, Noe Gonzales, Jerry L. Nadler
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of 12-hydroxyeicosatetraenoic acid (12-HETE), an arachidonic acid metabolite of 12-lipoxygenase, to activate p21(Rac/Cdc42)-activated kinase (PAK1) was studied in a Chinese hamster ovary fibroblast cell line overexpressing the rat vascular type-1a angiotensin II receptor (CHO-AT(1a)). 12-HETE (0.1 microM) treatment induced a time-dependent activation of PAK1, with a peak effect at 10 min (335 +/- 16% of control; n=3, P<0.001). The stimulatory effect of 12-HETE on PAK1 activity was dose-dependent, with the maximal activation at 0.01 microM (350+/-15% of control; n=3, P<0.001). A PAK1 fragment encoding the Cdc42/Rac binding domain (amino acid residues 67-150 of hPAK1 termed PBD), was transfected into CHO-AT(1a) cells. PBD transfection markedly reduced 12-HETE-induced PAK1 activation. Furthermore, transfection of dominant negative Cdc42 and Rac1 inhibited 12-HETE-induced PAK1, strongly suggesting that Cdc42 and Rac1 are the upstream activators of 12-HETE-induced PAK1 activation. Low concentrations (1.5 microM) of LY294002, a highly specific inhibitor of phosphoinositide 3-kinase (PI-3K), abolished 12-HETE-induced PAK1 activation, suggesting that PI-3K activation is upstream of 12-HETE-induced PAK1 activation. Transfection of dominant negative PAK1 blocked 12-HETE-induced PAK1, cJun N-terminal kinase (JNK1) and extracellular-signal-regulated kinase (ERK) activity, while transfection of constitutively active PAK1 stimulated PAK1, JNK1 and ERK activity, suggesting that PAK1 is an upstream activator of 12-HETE-induced JNK1 and ERK activation in these cells. We conclude that 12-HETE can activate Cdc42, Rac1 and PI-3K, which then participate as upstream signalling molecules for PAK1 and JNK1 activation.