Published in

Portland Press, Biochemical Journal, 1(349), p. 231-238, 2000

DOI: 10.1042/bj3490231

Portland Press, Biochemical Journal, 1(349), p. 231

DOI: 10.1042/0264-6021:3490231

Links

Tools

Export citation

Search in Google Scholar

Low-density lipoprotein activates the small GTPases Rap1 and Ral in human platelets.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Physiological concentrations of low-density lipoprotein (LDL) sensitize blood platelets to alpha-thrombin- and collagen-induced secretion, and after prolonged contact trigger secretion independent of other agonists. Here we report that LDL activates the small GTPases Rap1 and Ral but not Ras, as assessed by specific precipitation of the GTP-bound enzymes. In unstirred suspensions, the inhibitor SB203580 blocks Rap1 activation by 60-70%, suggesting activation via p38 mitogen-activated protein kinase and a second, unidentified route. Inhibitors of cyclooxygenase (indomethacin) and the thromboxane A(2) (TxA(2)) receptor (SQ30741) induce complete inhibition, indicating that Rap1 activation is the result of TxA(2) formation. Stirring reveals a second, TxA(2)-independent Rap1 activation, which correlates quantitatively with a slow induction of dense granule secretion. Both pathways are unaffected by inhibitors of ligand binding to integrin alpha(IIb)beta(3). The results suggest that Rap1 and Ral, but not Ras, may take part in signalling routes initiated by LDL that initially enhance the sensitivity of platelets to other agonists and later trigger LDL-dependent secretion.