Published in

Brill Academic Publishers, IAWA Journal, 1(32), p. 25-40, 2011

DOI: 10.1163/22941932-90000040

Links

Tools

Export citation

Search in Google Scholar

Azimuthal variations in xylem structure and water relations in cork oak (Quercus suber)

Journal article published in 2011 by Nadia Barij, Jan Čermák, J. Cermak, Alexia Stokes ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Azimuthal variations in xylem conductivity and transpiration can occur in trees and may be due to heterogeneity in environmental factors. In cork oak (Quercus suber L.), it can be hypothesized that such modifications may be more pronounced because the insulating layer of bark is harvested every 9–10 years, thus cambial cells will be exposed to fluctuations in the microenvironment. To investigate whether xylem structure and water relations differed around the stems of mature cork oak, sap flow per section and xylem structure were measured on the northern (N) and southern (S) sides of nine trees during three months in Portugal, using the Trunk Sector Heat Balance method. Crown size was measured on both sides of each tree and increment wood cores were extracted from the sites where sap flow was measured in five trees. Wood moisture content, earlywood (EW) vessel size and density were measured and theoretical hydraulic conductivity for individual vessels (Lth) was calculated along the N and S stem radial profiles. No significant differences in crown size between the two sides of the tree were found, but sap flow was higher on the S side of the tree in May only. No differences in wood moisture content were observed along the length of each wood core throughout the heartwood. Significant differences in vessel size occurred, with a greater diameter and surface area on the N side of the tree, and consequently Lth was significantly greater. These conduit diameters on the S facing side of the tree may be smaller in response to a combination of signals and trade-offs due to the heterogeneous air and soil environment around the tree.