Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms4183

Elsevier, Biophysical Journal, 2(106), p. 314a, 2014

DOI: 10.1016/j.bpj.2013.11.1818

Links

Tools

Export citation

Search in Google Scholar

Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

STIM1 and STIM2 are widely expressed endoplasmic reticulum (ER) Ca(2+) sensor proteins able to translocate within the ER membrane to physically couple with and gate plasma membrane Orai Ca(2+) channels. Although they are structurally similar, we reveal critical differences in the function of the short STIM-Orai-activating regions (SOAR) of STIM1 and STIM2. We narrow these differences in Orai1 gating to a strategically exposed phenylalanine residue (Phe-394) in SOAR1, which in SOAR2 is substituted by a leucine residue. Remarkably, in full-length STIM1, replacement of Phe-394 with the dimensionally similar but polar histidine head group prevents both Orai1 binding and gating, creating an Orai1 non-agonist. Thus, this residue is critical in tuning the efficacy of Orai activation. While STIM1 is a full Orai1-agonist, leucine-replacement of this crucial residue in STIM2 endows it with partial agonist properties, which may be critical for limiting Orai1 activation stemming from its enhanced sensitivity to store-depletion.