Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 1(11), p. 94-100, 2004

DOI: 10.1002/chem.200400584

Links

Tools

Export citation

Search in Google Scholar

Hierarchical self-assembly of supramolecular spintronic modules into 1D- and 2D-architectures with emergence of magnetic properties.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hierarchical self-assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with Fe(II) cations generates the [2x2] grid-type functional building modules 1 and 2, presenting spin-transition properties and preorganizing an array of coordination sites that sets the stage for a second assembly step. Indeed, binding of La(III) ions to 1 and of Ag(I) ions to 2 leads to a 1D columnar superstructure 3 and to a wall-like 2D layer 4, respectively, with concomitant modulation of the magnetic properties of 1 and 2. Thus, to each of the two levels of structural complexity generated by the two sequential self-assembly steps corresponds the emergence of novel functional features.