Published in

American Chemical Society, Journal of Medicinal Chemistry, 14(53), p. 5144-5154, 2010

DOI: 10.1021/jm100429r

Links

Tools

Export citation

Search in Google Scholar

Platinum(II) Complexes with Bioactive Carrier Ligands Having High Affinity for the Translocator Protein

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Peripheral benzodiazepine receptors (PBRs, also named TSPO) are overexpressed in many tumor types, with the grade of TSPO overexpression correlating with the malignancy of the tumor. For this reason, TSPO-binding ligands have been widely explored as carriers for receptor-mediated drug delivery. In this paper we have selected a ligand with nanomolar affinity for TSPO, [2-(4-chlorophenyl)-8-aminoimidazo[1,2-a]pyridin-3-yl]]-N,N-di-n-propyla cetamide (3), for preparing platinum adducts that are structural analogues to picoplatin, cis-[PtCl(2)(NH(3))(2-picoline)] (AMD0473, 6), a platinum analogue currently in advanced clinical investigation. In vitro studies assessing receptor binding and cytotoxicity against human and rat glioma cells have shown that the new compounds cis-[PtX(2)(NH(3)){[2-(4-chlorophenyl)-8-aminoimidazo[1,2-a]pyridin-3-yl ]-N,N-di-n-propylacetamidel}] (X = I,4; X = Cl, 5) keep high affinity and selectivity for TSPO (nanomolar concentration) and are as cytotoxic as cisplatin. Moreover, they appear to be equally active against sensitive and cisplatin-resistant A2780 cells. Similar to cisplatin, these compounds induce apoptosis but show a favorable 10- to 100-fold enhanced accumulation in the glioma cells.