Published in

Nature Research, Scientific Reports, 1(3), 2013

DOI: 10.1038/srep03308

Links

Tools

Export citation

Search in Google Scholar

hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAngiogenesis is a potential target for cancer therapy. We identified a novel signaling pathway that sustains angiogenesis and progression in colorectal cancer (CRC). This pathway is triggered by β1 integrin-mediated adhesion and leads to VEGF-A secretion. The effect is modulated by the human ether-à-go-go related gene 1 (hERG1) K+ channel. hERG1 recruits and activates PI3K and Akt. This in turn increases the Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumour progression genes. This signaling pathway has novel features in that the integrin- and hERG1-dependent activation of HIF (i) is triggered in normoxia, especially after CRC cells have experienced a hypoxic stage, (ii) involves NF-kB and (iii) is counteracted by an active p53. Blocking hERG1 switches this pathway off also in vivo, by inhibiting cell growth, angiogenesis and metastatic spread. This suggests that non-cardiotoxic anti-hERG1 drugs might be a fruitful therapeutic strategy to prevent the failure of anti-VEGF therapy.