Published in

American Chemical Society, Chemical Research in Toxicology, 10(27), p. 1829-1836, 2014

DOI: 10.1021/tx5002699

Links

Tools

Export citation

Search in Google Scholar

Analysis of a Malondialdehyde–Deoxyguanosine Adduct in Human Leukocyte DNA by Liquid Chromatography Nanoelectrospray–High-Resolution Tandem Mass Spectrometry

Journal article published in 2014 by Bin, Bin Ma, Peter William Villalta, Silvia Balbo ORCID, Irina Stepanov ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Malondialdehyde (MDA), an endogenous genotoxic product formed upon lipid peroxidation and prostaglandin biosynthesis, can react with DNA to form stable adducts. These adducts may contribute to the development of such inflammation-mediated diseases as cancer, cardiovascular, and neurodegenerative diseases. The predominant MDA-derived DNA adduct formed under physiological conditions is 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG). In this study, we developed a novel liquid chromatography (LC)-nanoelectrospray ionization (NSI)-high resolution tandem mass spectrometry (HRMS/MS) method for the analysis of M1dG in human leukocyte DNA. After enzymatic hydrolysis of DNA, M1dG and the added internal standard [13C3]M1dG were reduced to their 5,6-dihydro derivatives by addition of sodium borohydride to the hydrolysate and purified by solid-phase extraction and column chromatography. The 5,6-dihydro derivatives in the purified samples were analyzed by LC-NSI-HRMS/MS using higher-energy collisional dissociation (HCD) fragmentation, isolation widths of 1 Da for both the analyte and internal standard, and a resolution of 50,000. The detection limit of the developed method is 5 amol on column, and the limit of quantitation is 0.125 fmol/mg DNA starting with 200 µg DNA. Method accuracy and precision were characterized. The developed method was further applied to the analysis of leukocyte DNA from 50 human subjects. M1dG was detected in all samples and ranged from 0.132 to 275 fmol/mg DNA, or 0.004 to 9.15 adducts per 108 bases. This unique and highly sensitive HRMS/MS-based method can be used in future studies investigating the pathophysiological role of M1dG in human diseases.