Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 7(87), 2013

DOI: 10.1103/physrevb.87.075405

Links

Tools

Export citation

Search in Google Scholar

Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recent studies show that periodic potentials can generate superlattice Dirac points at energies in graphene (is the Fermi velocity of graphene and G is the reciprocal superlattice vector). Here, we perform scanning tunneling microscopy and spectroscopy studies of a corrugated graphene monolayer on Rh foil. We show that the quasi-periodic ripples of nanometer wavelength in the corrugated graphene give rise to weak one-dimensional (1D) electronic potentials and thereby lead to the emergence of the superlattice Dirac points. The position of the superlattice Dirac point is space-dependent and shows a wide distribution of values. We demonstrated that the space-dependent superlattice Dirac points is closely related to the space-dependent Fermi velocity, which may arise from the effect of the local strain and the strong electron-electron interaction in the corrugated graphene. ; Comment: 4figures