Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Planetary and Space Science, 1(74), p. 224-246

DOI: 10.1016/j.pss.2012.08.002

Links

Tools

Export citation

Search in Google Scholar

Characterisation of potential landing sites for the European Space Agency's Lunar Lander project

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This article describes the characterization activities of the landing sites currently envisaged for the Lunar Lander mission of the European Space Agency. These sites have been identified in the South Pole Region (-85° to -90° latitude) based on favourable illumination conditions, which make it possible to have a long-duration mission with conventional power and thermal control subsystems, capable of enduring relatively short periods of darkness (in the order of tens of hours), instead of utilizing Radioisotope Heating Units. The illumination conditions are simulated at the potential landing sites based on topographic data from the Lunar Orbiter Laser Altimeter (LOLA), using three independent tools. Risk assessment of the identified sites is also being performed through independent studies. Long baseline slopes are assessed based on LOLA, while craters and boulders are detected both visually and using computer tools in Lunar Reconnaissance Orbiter Camera (LROC) images, down to assize of less than 2m, and size-frequency distributions are generated. Shadow hazards are also assessed via LROC images. The preliminary results show that areas with quasi-continuous illumination of several months exist, but their size is small (few hundred metres); the duration of the illumination period drops quickly to less than one month outside the areas, and some areas present gaps with short illumination periods. Concerning hazard distributions, 50m slopes are found to be shallow (few degrees) based on LOLA, whereas at the scale of the lander footprint (~5 m) they are mostly dominated by craters, expected to be mature (from geological context) and shallow (~11°).The preliminary conclusion is that the environment at the prospective landing sites is within the capabilities of the Lander design.