Published in

American Chemical Society, ACS Applied Materials and Interfaces, 8(2), p. 2206-2212, 2010

DOI: 10.1021/am100211h

Links

Tools

Export citation

Search in Google Scholar

Efficient technologies for the Fabrication of dense TaB2-based Ultra High Temperature Ceramics

Journal article published in 2010 by Roberta Licheri, Roberto Orru ORCID, Clara Musa, Giacomo Cao
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 20 min ball-milling treatment (ball to powders ratio equal to 1) was demonstrated to be a valuable method for mechanochemically activating Ta, B4C, Si, and graphite to prepare TaB2-SiC and TaB2-TaC-SiC ultrarefractory composites by self-propagating high-temperature synthesis (SHS). The resulting completely converted powders were spark plasma sintered at 1800 degrees C for 30 min, thus obtaining products about 96% dense. TGA characterization of bulk materials confirmed the beneficial effect of SiC in the resistance to oxidation behavior of the composite materials, while the presence of TaC appears to be unfavorable from this point of view. The obtained mechanical properties are in general comparable to those ones of Ta-based monolithic and composite bulk ceramics densified in previous works, although fracture toughness is significantly higher for TaB2-SiC. This outcome holds also true when the comparison is extended to the TaB2-TaC-SiC sample sintered in this work. The possible explanation is based on the occurrence of several toughening mechanisms (crack bridging, crack deflection, frictional interlocking, and crack branching) involved when TaB2-SiC samples are subjected to the prescribed indentation conditions, whereas crack propagation is facilitated by the relatively finer and more homogeneous microstructure exhibited by the ternary system.