Published in

Oxford University Press, Journal of Heredity, 5(103), p. 661-671, 2012

DOI: 10.1093/jhered/ess042

Links

Tools

Export citation

Search in Google Scholar

Genetic Evidence for the Uncoupling of Local Aquaculture Activities and a Population of an Invasive Species--A Case Study of Pacific Oysters (Crassostrea gigas)

Journal article published in 2012 by Judith Kochmann, Jens Carlsson, Tasman P. Crowe, Stefano Mariani ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human-mediated introduction of nonnative species into coastal areas via aquaculture is one of the main pathways that can lead to biological invasions. To develop strategies to counteract invasions, it is critical to determine whether populations establishing in the wild are self-sustaining or based on repeated introductions. Invasions by the Pacific oyster (Crassostrea gigas) have been associated with the growing oyster aquaculture industry worldwide. In this study, temporal genetic variability of farmed and wild oysters from the largest enclosed bay in Ireland was assessed to reconstruct the recent biological history of the feral populations using 7 anonymous microsatellites and 7 microsatellites linked to expressed sequence tags (ESTs). There was no evidence of EST-linked markers showing footprints of selection. Allelic richness was higher in feral than in aquaculture samples (P = 0.003, paired t-test). Significant deviations from Hardy-Weinberg equilibrium due to heterozygote deficiencies were detected for almost all loci and samples, most likely explained by the presence of null alleles. Relatively high genetic differentiation was found between aquaculture and feral oysters (largest pairwise multilocus F(ST) 0.074, P < 0.01) and between year classes of oysters from aquaculture (largest pairwise multilocus F(ST) 0.073, P < 0.01), which was also confirmed by the strong separation of aquaculture and wild samples using Bayesian clustering approaches. A 10-fold higher effective population size (N(e)) and a high number of private alleles in wild oysters suggest an established self-sustaining feral population. The wild oyster population studied appears demographically independent from the current aquaculture activities in the estuary and alternative scenarios of introduction pathways are discussed.