Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, BioMed Research International, (2014), p. 1-7, 2014

DOI: 10.1155/2014/180468

Links

Tools

Export citation

Search in Google Scholar

Long-Term Effects of Postearthquake Distress on Brain Microstructural Changes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Stressful events can have both short- and long-term effects on the brain. Our recent investigation identified short-term white matter integrity (WMI) changes in 30 subjects soon after the Japanese earthquake. Our findings suggested that lower WMI in the right anterior cingulum (Cg) was a pre-existing vulnerability factor and increased WMI in the left anterior Cg and uncinate fasciculus (Uf) after the earthquake was an acquired sign of postearthquake distress. However, the long-term effects on WMI remained unclear. Here, we examined the 1-year WMI changes in 25 subjects to clarify long-term effects on the WMI. We found differential FAs in the right anterior Cg, bilateral Uf, left superior longitudinal fasciculus (SLF), and left thalamus, suggesting that synaptic enhancement and shrinkage were long-term effects. Additionally, the correlation between psychological measures related to postearthquake distress and the degree of WMI alternation in the right anterior Cg and the left Uf led us to speculate that temporal WMI changes in some subjects with emotional distress occurred soon after the disaster. We hypothesized that dynamic WMI changes predict a better prognosis, whereas persistently lower WMI is a marker of cognitive dysfunction, implying the development of anxiety disorders.