Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 4(285), p. 2227-2231, 2010

DOI: 10.1074/jbc.c109.071225

Links

Tools

Export citation

Search in Google Scholar

Direct and Indirect Induction by 1,25-Dihydroxyvitamin D3 of the NOD2/CARD15-Defensin β2 Innate Immune Pathway Defective in Crohn Disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Vitamin D signaling through its nuclear vitamin D receptor has emerged as a key regulator of innate immunity in humans. Here we show that hormonal vitamin D, 1,25-dihydroxyvitamin D3, robustly stimulates expression of pattern recognition receptor NOD2/CARD15/IBD1 gene and protein in primary human monocytic and epithelial cells. The vitamin D receptor signals through distal enhancers in the NOD2 gene, whose function was validated by chromatin immunoprecipitation and chromatin conformation capture assays. A key downstream signaling consequence of NOD2 activation by agonist muramyl dipeptide is stimulation of NF-κB transcription factor function, which induces expression of the gene encoding antimicrobial peptide defensin β2 (DEFB2/HBD2). Pretreatment with 1,25-dihydroxyvitamin D3 synergistically induced NF-κB function and expression of genes encoding DEFB2/HBD2 and antimicrobial peptide cathelicidin in the presence of muramyl dipeptide. Importantly, this synergistic response was also seen in macrophages from a donor wild type for NOD2 but was absent in macrophages from patients with Crohn disease homozygous for non-functional NOD2 variants. These studies provide strong molecular links between vitamin D deficiency and the genetics of Crohn disease, a chronic incurable inflammatory bowel condition, as Crohn's pathogenesis is associated with attenuated NOD2 or DEFB2/HBD2 function.