Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 1395(265), p. 529-535

DOI: 10.1098/rspb.1998.0327

Links

Tools

Export citation

Search in Google Scholar

Dynamics of T-cell antagonism: enhanced viral diversity and survival.

Journal article published in 1998 by N. J. Burroughs, Rand Da, D. A. Rand ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In rapidly evolving viruses the detection of virally infected cells can possibly be subverted by the production of altered peptides. There are peptides with single amino acid changes that can dramatically change T-cell responses, e.g. a loss of cytotoxic activity. They are still recognized by the T cell, but the signals required for effector function are only partially delivered. Thus, altered peptide presenting cells can act as decoy targets for specific immune responses. The existence of altered peptides in vivo has been demonstrated in hepatitis B and HIV. Using a mathematical model we address the question of how these altered peptides can affect the virus-immune system dynamics, and demonstrate that virus survival is enhanced. If the mutation rate of the virus is sufficient, one observes complex dynamics in which the antagonism acts so as to maintain the viral diversity, possibly leading to the development of a mutually antagonistic network or a continual turnover of escape mutants. In either case the pathogen is able to outrun the immune system. Indeed, sometimes the enhancement is so great that a virus that would normally be cleared by the immune system is able to outrun it.