Published in

BioMed Central, Movement Ecology, 1(2), 2014

DOI: 10.1186/s40462-014-0026-1

Links

Tools

Export citation

Search in Google Scholar

Adding structure to land cover – using fractional cover to study animal habitat use

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis. We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio–temporal scales. Results We analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump–shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges. Conclusion The application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer.