Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 3(15), p. 1585-1598, 2015

DOI: 10.5194/acp-15-1585-2015

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 14(14), p. 21065-21099

DOI: 10.5194/acpd-14-21065-2014

Links

Tools

Export citation

Search in Google Scholar

The influence of the North Atlantic Oscillation and El Niño–Southern Oscillation on mean and extreme values of column ozone over the United States

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.