Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 2(11), p. 503-518, 2011

DOI: 10.5194/acp-11-503-2011

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 7(10), p. 18101-18138

DOI: 10.5194/acpd-10-18101-2010

Links

Tools

Export citation

Search in Google Scholar

Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September), during which enhancements in a number of atmospheric species were observed in the upper troposphere over southwestern Asia. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included a number of C2–C8 non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over southwestern Asia during the monsoon, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios with carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of fossil fuels, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 days in the south and 9–12 days in the north.