Maintaining meromixis in Lake Pavin (Auvergne, France): The key role of a sublacustrine spring

Full text: Download

Publisher: Elsevier (12 months)

Preprint: archiving allowed. Upload

Postprint: archiving allowed. Upload

Published version: archiving forbidden. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO
Abstract
Lake Pavin is a deep meromictic lake. Its water column is divided into two parts: the mixolimnion, which is subjected to mixing during seasonal overturns; and the monimolimnion which remains unmixed. Using high precision and high frequency temperature and conductivity profiles along with continuous temperature measurements, this study reveals the presence of a sublacustrine, intermittent cold spring at the bottom of the mixolimnion at a depth between 50 and 55 m. This cold-water input rises in the water column by saline convection. The use of a simple conceptual model, representing turbulent diapycnal diffusivity and convection correlated with the presence of the spring within the water column indicates its role in maintaining the meromixis characteristic of the lake on the intra-annual time scale. The spring also influences seasonal overturns and thus contributes to establish the depth of the mixolimnion-monimolimnion interface on the inter-annual time scale.