Published in

American Physical Society, Physical Review A, 4(84), 2011

DOI: 10.1103/physreva.84.042703

Links

Tools

Export citation

Search in Google Scholar

Multichannel Quantum Defect Theory for cold molecular collisions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multichannel Quantum Defect Theory (MQDT) is shown to be capable of producing quantitatively accurate results for low-energy atom-molecule scattering calculations. With a suitable choice of reference potential and short-range matching distance, it is possible to define a matrix that encapsulates the short-range collision dynamics and is only weakly dependent on energy and magnetic field. Once this has been produced, calculations at additional energies and fields can be performed at a computational cost that is proportional to the number of channels N and not to N^3. MQDT thus provides a promising method for carrying out low-energy molecular scattering calculations on systems where full exploration of the energy- and field-dependence is currently impractical. ; Comment: 9 pages, 9 figures. Final version, incorporating responses to referees' comments