Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, AGE, 3(35), p. 621-635, 2012

DOI: 10.1007/s11357-012-9391-0

Links

Tools

Export citation

Search in Google Scholar

Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage

Journal article published in 2012 by Lorena Arranz, Alba Naudí, Mónica De la Fuente, Reinald Pamplona ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Membrane unsaturation plays an important role in the aging process and the determination of inter-species animal longevity. Furthermore, the accumulation of oxidation-derived molecular damage to cellular components particularly in the nervous and immune systems over time leads to homeostasis loss, which highly influences age-related morbidity and mortality. In this context, it is of great interest to know and discern the degree of membrane unsaturation and the steady-state levels of oxidative damage in both physiological systems from long-lived subjects. In the present work, adult (28 ± 4 weeks), old (76 ± 4 weeks) and exceptionally old (128 ± 4 weeks) BALB/c female mice were used. Brain and spleen were analysed for membrane fatty acid composition and specific markers of protein oxidation, glycoxidation and lipoxidation damage, i.e. glutamic semialdehyde, aminoadipic semialdehyde, carboxyethyl-lysine, carboxymethyl-lysine and malondialdehyde-lysine, by gas chromatography–mass spectrometry. The results showed significantly lower peroxidizability index in brain and spleen from exceptionally old animals when compared to old specimens. The higher membrane resistance to lipid peroxidation and lower lipoxidation-derived molecular damage found in exceptionally old animals was associated with a significantly lower desaturase activity and peroxisomal β-oxidation. Protein oxidation markers in brain and spleen from adult and exceptionally old animals showed similar levels, which were higher in old mice. In addition, the higher levels of the glycoxidation-derived marker observed in exceptionally old animals, as well as in adult mice, could be considered as a good indicator of a better bioenergetic state of these animals when compared to the old group. In conclusion, low lipid oxidation susceptibility and maintenance of adult-like protein lipoxidative damage could be key mechanisms for longevity achievement.