Published in

American Institute of Physics, Applied Physics Letters, 12(104), p. 121101

DOI: 10.1063/1.4869297

Links

Tools

Export citation

Search in Google Scholar

Tunable hyperbolic metamaterials utilizing phase change heterostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present a metal-free tunable anisotropic metamaterial where the iso-frequency surface is tuned from elliptical to hyperbolic dispersion by exploiting the metal-insulator phase transition in the correlated material vanadium dioxide (VO2). Using VO2-TiO2 heterostructures, we demonstrate the transition in the effective dielectric constant parallel to the layers to undergo a sign change from positive to negative as the VO2 undergoes the phase transition. The possibility to tune the iso-frequency surface in real time using external perturbations such as temperature, voltage, or optical pulses creates new avenues for controlling light-matter interaction. (C) 2014 AIP Publishing LLC.