Published in

Conference on Lasers and Electro-Optics 2012

DOI: 10.1364/qels.2012.qm2e.6

American Association for the Advancement of Science, Science, 6078(336), p. 205-209, 2012

DOI: 10.1126/science.1219171

Links

Tools

Export citation

Search in Google Scholar

Topological Transitions in Metamaterials

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The ideas of mathematical topology play an important role in many aspects of modern physics - from phase transitions to field theory to nonlinear dynamics (Nakahara M (2003) in Geometry, Topology and Physics, ed Brewer DF (IOP Publishing Ltd, Bristol and Philadelphia), Monastryskiy M (1987) in Riemann Topology and Physics, (Birkhauser Verlag AG)). An important example of this is the Lifshitz transition (Lifshitz IM (1960) Anomalies of electron characteristics of a metal in the high-pressure region, Sov Phys JETP 11: 1130-1135), where the transformation of the Fermi surface of a metal from a closed to an open geometry (due to e.g. external pressure) leads to a dramatic effect on the electron magneto-transport (Kosevich AM (2004) Topology and solid-state physics. Low Temp Phys 30: 97-118). Here, we present the optical equivalent of the Lifshitz transition in strongly anisotropic metamaterials. When one of the components of the dielectric permittivity tensor of such a composite changes sign, the corresponding iso-frequency surface transforms from an ellipsoid to a hyperboloid. Since the photonic density of states can be related to the volume enclosed by the iso-frequency surface, such a topological transition in a metamaterial leads to a dramatic change in the photonic density of states, with a resulting effect on every single physical parameter related to the metamaterial - from thermodynamic quantities such as its equilibrium electromagnetic energy to the nonlinear optical response to quantum-electrodynamic effects such as spontaneous emission. In the present paper, we demonstrate the modification of spontaneous light emission from quantum dots placed near the surface of the metamaterial undergoing the topological Lifshitz transition, and present the theoretical description of the effect.