Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Chemical Biology, 9(7), p. 1509-1514, 2012

DOI: 10.1021/cb300241v

Links

Tools

Export citation

Search in Google Scholar

Sialidase specificity determined by chemoselective modification of complex sialylated glycans

Journal article published in 2012 by Randy B. Parker, Janet E. McCombs, Jennifer J. Kohler ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that S. pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid, versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.