American Astronomical Society, Astrophysical Journal, 1(743), p. 2, 2011
DOI: 10.1088/0004-637x/743/1/2
Full text: Download
Close encounters between galaxies are expected to be a viable mechanism, as predicted by numerical simulations, by which accretion onto supermassive black holes can be initiated. To test this scenario, we construct a sample of 562 galaxies (M_* > 2.5 × 10^(10) M_☉) in kinematic pairs over the redshift range 0.25 2 × 10^(42) erg s^(–1)) detected by Chandra. We find a higher fraction of an AGN in galaxies in pairs relative to isolated galaxies of similar stellar mass. Our result is primarily due to an enhancement of AGN activity, by a factor of 1.9 (observed) and 2.6 (intrinsic), for galaxies in pairs of projected separation less than 75 kpc and line-of-sight velocity offset less than 500 km s^(–1). This study demonstrates that close kinematic pairs are conducive environments for black hole growth, either indicating a causal physical connection or an inherent relation, such as, to enhanced star formation. In the Appendix, we describe a method for estimating the intrinsic fractions of galaxies (either in pairs or the field) hosting an AGN with confidence intervals, and an excess fraction in pairs. We estimate that 17.8^(+8.4)_(–7.4)% of all moderate-luminosity AGN activity takes place within galaxies undergoing early stages of interaction that leaves open the question as to what physical processes are responsible for fueling the remaining ~80% that may include late-stage mergers.