Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Deep Sea Research Part II: Topical Studies in Oceanography, (101), p. 163-179

DOI: 10.1016/j.dsr2.2013.09.043

Links

Tools

Export citation

Search in Google Scholar

Tidal and wind-event variability and the distribution of two groups of Pseudo-nitzschia species in an upwelling-influenced ría

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High-resolution physical and biological measurements were carried out in May-June 2007 during the ‘HABIT-Pontevedra 2007' survey in Ría de Pontevedra (Galician Rías Baixas, NW Spain) to study small-scale physical-biological interactions in the distribution of microphytoplankton, with special emphasis on harmful species. Longitudinal transects from the Ría to the adjacent shelf were sampled to describe the spring-neap tidal and circadian variability. An in situ particle profiler, a moored ADCP, and a towed undulating CTD (Scanfish) were used during the survey, which took place after an upwelling pulse at neap tides during a downwelling–upwelling cycle and coincided with the annual maximum of Pseudo-nitzschia spp. Cell maxima of P. seriata (2×106 cells L−1) and P. delicatissima (6×105 cells L−1) groups were observed during the first half of the cruise during downwelling, and a significant decrease in cell numbers occurred during subsequent relaxation-upwelling conditions. Thin layers were eroded during downwelling and formed again in the subsequent upwelling pulse. Cells of the P. seriata group were always dominant in terms of biomass but the contribution of the P. delicatissima group increased with stratification. Water exchange between the Ría and the adjacent shelf was mainly controlled by the upwelling/downwelling cycle, and tidal (both semidiurnal and spring-neap) variability appeared as a modulation of the response of the Ría circulation to wind variability. The circadian variability was regulated by tidal forcing, and Pseudo-nitzschia spp. maxima were associated with high stratification during low tide. The magnitude of spring-neap tidal and circadian variability has to be considered when designing and implementing water quality and harmful algae monitoring programmes. Blooms of Pseudo-nitzschia ssp. were not associated with the occurrence of domoic acid in shellfish even when Pseudo-nitzschia australis was dominant. These results confirm that just cell densities of the potential toxin producer are not enough for early warning in monitoring of Pseudo-nitzschia events.