Published in

American Association of Immunologists, The Journal of Immunology, 11(186), p. 6182-6190, 2011

DOI: 10.4049/jimmunol.1000917

Links

Tools

Export citation

Search in Google Scholar

IL-23 Receptor Regulation by Let-7f in Human CD4+ Memory T Cells

Journal article published in 2011 by Zhaoxia Li, Feng Wu, Steven R. Brant, John H. Kwon
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract CD4+ memory T cells include the Th17 cell population, which has been shown to be implicated in autoimmune and inflammatory diseases. These memory T cells express higher IL-23R and produce more IL-17 compared with their naive counterparts. However, the molecular mechanisms that regulate IL-23R expression in human T cells are not completely understood. MicroRNAs play important roles in a wide range of biological events through posttranscriptional suppression of target mRNAs. In this article, we provide evidence that a specific microRNA, Let-7f, inhibits IL-23R expression in human CD4+ memory T cells. Endogenous expression of Let-7f in memory T cells is significantly lower when compared with naive T cells, and Let-7f blocks IL-23R expression through its complementary target sequence within 3′ untranslated region of target gene. Furthermore, exogenous transfection of a Let-7f mimic into memory T cells results in downregulation of IL-23R and its downstream cytokine, IL-17. Our findings reveal a novel mechanism in regulating the IL-23/IL-23R pathway and subsequent downstream IL-17 production, which may provide novel therapeutics for human inflammatory and autoimmune diseases.