Published in

Elsevier, Toxicon: An Interdisciplinary Journal on the Toxins Derived from Animals, Plants and Microorganisms, (65), p. 81-89, 2013

DOI: 10.1016/j.toxicon.2013.01.010

Links

Tools

Export citation

Search in Google Scholar

Dissolved azaspiracids are absorbed and metabolized by blue mussels (Mytilus edulis)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The relationship between azaspiracid shellfish poisoning and a small dinoflagellate, Azadinium spinosum, has been shown recently. The organism produces AZA1 and -2, while AZA3 and other analogues are metabolic products formed in shellfish. We evaluated whether mussels were capable of accumulating dissolved AZA1 and -2, and compared the toxin profiles of these mussels at 24 h with profiles of those exposed to live or lysed A. spinosum. We also assessed the possibility of preparative production of AZA metabolites by exposing mussels to semi-purified AZA1. We exposed mussels to similar concentration of AZAs: dissolved AZA1+2 (crude extract) at 7.5 and 0.75 μg L−1, dissolved AZA1+2 (7.5 μg L−1) in combination with Isochrysis affinis galbana, and lysed and live A. spinosum cells at 1 × 105 and 1 × 104 cell mL−1 (containing equivalent amounts of AZA1+2). Subsequently, we dissected and analysed digestive glands, gills and remaining flesh. Mussels (whole flesh) accumulated AZAs to levels above the regulatory limit, except at the lower levels of dissolved AZAs. The toxin profile of the mussels varied significantly with treatment. The gills contained 42–46% and the digestive glands 23–24% of the total toxin load using dissolved AZAs, compared to 3–12% and 75–90%, respectively, in mussels exposed to live A. spinosum. Exposure of mussels to semi-purified AZA1 produced the metabolites AZA17 (16.5%) and AZA3 (1.7%) after 4 days of exposure, but the conversion efficiency was too low to justify using this procedure for preparative isolation.