Published in

SAGE Publications, Applied Spectroscopy, 4(69), p. 488-495, 2015

DOI: 10.1366/14-07655

Links

Tools

Export citation

Search in Google Scholar

A Comparison of Near- and Mid-Infrared Spectroscopic Methods for the Analysis of Several Nutritionally Important Chemical Substances in the Chinese Yam (Dioscorea opposita): Total Sugar, Polysaccharides, and Flavonoids

Journal article published in 2015 by Hua Zhuang, Yongnian Ni, Serge Kokot
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Chinese yam ( Dioscorea opposita) is a basic food in Asia and especially China. Consequently, an uncomplicated, reliable method should be available for the analysis of the quality and origin of the yams. Thus, near-infrared (NIR) and mid-infrared (mid-IR) spectroscopic methods were developed to discriminate among Chinese yam samples collected from four geographical regions. The yam samples were analyzed also for total sugar, polysaccharides, and flavonoids. These three analytes were used to compare the performance of the analytical methods. Overlapping spectra were resolved using chemometrics methods. Such spectra were compared qualitatively using principal component analysis (PCA) and quantitatively using partial least squares (PLS) and least squares-support vector machine (LS-SVM) models. We discriminated among the four sets of yam data using PCA, and the NIR data performed somewhat better than the mid-IR data. We constructed the PLS and LS-SVM calibration models for the prediction of the three key variables, and the LS-SVM model produced better results. Also, the NIR prediction model produced better outcomes than the mid-IR prediction model. Thus, both infrared (IR) techniques performed well for the analysis of the three key analytes, and the samples were qualitatively discriminated according to their provinces of origin. Both techniques may be recommended for the analysis of Chinese yams, although the NIR technique would be preferred.