Published in

Wiley, Biopolymers, 6(96), p. 780-788, 2011

DOI: 10.1002/bip.21692

Links

Tools

Export citation

Search in Google Scholar

Application of Ring-Closing Metathesis to Grb2 SH3 Domain-Binding Peptides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular processes depending on protein-protein interactions can utilize consensus recognition sequences that possess defined secondary structures. Left-handed polyproline II (PPII) helices are a class of secondary structure commonly involved with cellular signal transduction. However, unlike α-helices, for which a substantial body of work exists regarding applications of ring-closing metathesis (RCM), there are few reports on the stabilization PPII helices by RCM methodologies. The current study examined the effects of RCM macrocyclization on left-handed PPII helices involved with the SH3 domain-mediated binding of Sos1 to Grb2. Starting with the Sos1-derived peptide “Ac-V1-P2-P3-P4-V5-P6-P7-R8-R9-R10-amide”, RCM macrocyclizations were conducted utilizing alkenyl chains of varying lengths originating from the pyrrolidine rings of the Pro4 and Pro7 residues. The resulting macrocyclic peptides showed increased helicity as indicated by circular dichroism and enhanced abilities to block Grb2-Sos1 interactions in cell lysate pull-down assays. The synthetic approach may be useful in RCM macrocyclizations where maintenance of proline integrity at both ring junctures is desired.