Published in

National Institute of Environmental Health Sciences (NIEHS), Environmental Health Perspectives, 8(121), p. 978-984, 2013

DOI: 10.1289/ehp.1206187

Links

Tools

Export citation

Search in Google Scholar

Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in communication and social skills beginning before 3 years of age. Although ASD etiology is poorly understood, environmental exposures during gestation in particular have been implicated in the etiology of ASD (Gardener et al. 2009; Larsson et al. 2005; Roberts et al. 2007). Air pollution contains many toxicants known to affect neurological function and to have effects on the fetus in utero [U.S. Environmental Protection Agency (EPA) 2010]. Several recent studies have reported associations between perinatal exposure to air pollution and ASD in children. (Kalkbrenner et al. 2010; Palmer et al. 2009; Volk et al. 2011; Windham et al. 2006). In this study, we tested the hypothesis that perinatal exposure to hazardous air pollutants increases risk of ASD by estimating associations between the U.S. EPA–modeled levels of hazardous air pollutants at the time and place of birth and ASD in the children of participants in a national prospective longitudinal cohort, the Nurses’ Health Study II, focusing our analysis on toxicants associated with ASD in prior studies. In previous studies, metals (antimony, arsenic, cadmium, chromium, lead, mercury, manganese, nickel) (Palmer et al. 2009; Windham et al. 2006), styrene (Kalkbrenner et al. 2010), quinoline (Kalkbrenner et al. 2010), trichloroethylene (Windham et al. 2006), methylene chloride (Kalkbrenner et al. 2010; Windham et al. 2006), vinyl chloride (Windham et al. 2006), and diesel particulate matter (Volk et al. 2011; Windham et al. 2006) have been associated with ASD. U.S. EPA reviews have indicated that all of these pollutants have established or suspected effects on the nervous system and on the developing fetus from human or animal studies, except for nickel, which has no known effects on the nervous system, and quinoline, for which possible developmental effects have not been studied (U.S. EPA 2010). Arsenic, cadmium, chromium, mercury, methylene chloride, nickel, styrene, trichloroethylene, and vinyl chloride are also known or suspected mutagens (Agency for Toxic Substances and Disease Registry 2011), and de novo DNA mutations have been implicated in ASD etiology (Kinney et al. 2010; Sebat et al. 2007; Smith et al. 2009). Therefore, we focused on these pollutants a priori. We also examined whether there are sex differences in associations between pollutants and ASD. Sex-specific etiological subtypes of ASD (Fombonne 2007) and sex differences in the association of environmental toxicants with executive function (Braun et al. 2011) have been suggested by prior research. The one previous study that reported associations between exposure to pollutants and ASD according to sex did not find statistically significant differences (Kalkbrenner et al. 2010).