Published in

Elsevier, Immunity, 2(37), p. 264-275, 2012

DOI: 10.1016/j.immuni.2012.05.025

Links

Tools

Export citation

Search in Google Scholar

Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mature dendritic cells (DCs) are established as unrivaled antigen-presenting cells (APCs) in the initiation of immune responses, whereas steady-state DCs induce peripheral T cell tolerance. Using various genetic approaches, we depleted CD11c(+) DCs in mice and induced autoimmune CNS inflammation. Unexpectedly, mice lacking DCs developed aggravated disease compared to control mice. Furthermore, when we engineered DCs to present a CNS-associated autoantigen in an induced manner, we found robust tolerance that prevented disease, which coincided with an upregulation of the PD-1 receptor on antigen-specific T cells. Additionally, we showed that PD-1 was necessary for DC-mediated induction of regulatory T cells. Our results show that a reduction of DCs interferes with tolerance, resulting in a stronger inflammatory response, and that other APC populations could compensate for the loss of immunogenic APC function in DC-depleted mice.