Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Medicinal Chemistry, 14(57), p. 5975-5985, 2014

DOI: 10.1021/jm500249n

Links

Tools

Export citation

Search in Google Scholar

KDM4B as a target for prostate cancer: Structural analysis and selective inhibition by a novel inhibitor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The KDM4/JMJD2 Jumonji C-containing histone lysine demethylases (KDM4A-KDM4D), which selectively remove the methyl group(s) from tri/dimethylated lysine 9/36 of H3, modulate transcriptional activation and genome stability. The overexpression of KDM4A/KDM4B in prostate cancer and their association with androgen receptor suggest that KDM4A/KDM4B are potential progression factors for prostate cancer. Here, we report the crystal structure of the KDM4B.pyridine 2,4-dicarboxylic acid. H3K9me3 ternary complex, revealing the core active-site region and a selective K9/K36 site. A selective KDM4A/KDM4B inhibitor, 4, that occupies three subsites in the binding pocket is identified by virtual screening. Pharmacological and genetic inhibition of KDM4A/KDM4B significantly blocks the viability of cultured prostate cancer cells, which is accompanied by increased H3K9me3 staining and transcriptional silencing of growth-related genes. Significantly, a substantial portion of differentially expressed genes are AR-responsive, consistent with the roles of KDM4s as critical AR activators. Our results point to KDM4 as a useful therapeutic target and identify a new inhibitor scaffold.