Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Scandinavian Journal of Statistics, 1(43), p. 49-69, 2015

DOI: 10.1111/sjos.12164

Links

Tools

Export citation

Search in Google Scholar

On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood

Journal article published in 2015 by Zhouping Li, Jinfeng Xu, Wang Zhou
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In many applications, the parameters of interest are estimated by solving non-smooth estimating functions with U-statistic structure. Because the asymptotic covariances matrix of the estimator generally involves the underlying density function, resampling methods are often used to bypass the difficulty of non-parametric density estimation. Despite its simplicity, the resultant-covariance matrix estimator depends on the nature of resampling, and the method can be time-consuming when the number of replications is large. Furthermore, the inferences are based on the normal approximation that may not be accurate for practical sample sizes. In this paper, we propose a jackknife empirical likelihood-based inferential procedure for non-smooth estimating functions. Standard chi-square distributions are used to calculate the p-value and to construct confidence intervals. Extensive simulation studies and two real examples are provided to illustrate its practical utilities.