Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ultrasound in Medicine and Biology, 7(36), p. 1089-1097, 2010

DOI: 10.1016/j.ultrasmedbio.2010.04.018

Links

Tools

Export citation

Search in Google Scholar

Ultrasound Evaluation of Site-Specific Effect of Simulated Microgravity on Articular Cartilage

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Space flight induces acute changes in normal physiology in response to the microgravity environment. Articular cartilage is subjected to high loads under a ground reaction force on Earth. The objectives of this study were to investigate the site dependence of morphological and ultrasonic parameters of articular cartilage and to examine the site-specific responses of articular cartilage to simulated microgravity using ultrasound biomicroscopy (UBM). Six rats underwent tail suspension (simulated microgravity) for four weeks and six other rats were kept under normal Earth gravity as controls. Cartilage thickness, ultrasound roughness index (URI), integrated reflection coefficient (IRC) and integrated backscatter coefficient (IBC) of cartilage tissues, as well as histological degeneration were measured at the femoral head (FH), medial femoral condyle (MFC), lateral femoral condyle (LFC), patello-femoral groove (PFG) and patella (PAT). The results showed site dependence not significant in all UBM parameters except cartilage thickness (p