Published in

Springer (part of Springer Nature), Theoretical and Applied Climatology, 1-2(120), p. 331-339

DOI: 10.1007/s00704-014-1173-4

Links

Tools

Export citation

Search in Google Scholar

Surface radiation climatology for Ny-Ålesund, Svalbard (78.9° N), basic observations for trend detection

Journal article published in 2014 by Marion Maturilli ORCID, Andreas Herber, Gert König-Langlo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

At Ny-Ålesund (78.9° N), Svalbard, surface radiation measurements of up- and downward short- and longwave radiation are operated since August 1992 in the frame of the Baseline Surface Radiation Network (BSRN), complemented with surface and upper air meteorology since August 1993. The long-term observations are the base for a climatological presentation of the surface radiation data. Over the 21-year observation period, ongoing changes in the Arctic climate system are reflected. Particularly, the observations indicate a strong seasonality of surface warming and related changes in different radiation parameters. The annual mean temperature at Ny-Ålesund has risen by +1.3 ± 0.7 K per decade, with a maximum seasonal increase during the winter months of +3.1 ± 2.6 K per decade. At the same time, winter is also the season with the largest long-term changes in radiation, featuring an increase of +15.6 ± 11.6 Wm−2 per decade in the downward longwave radiation. Furthermore, changes in the reflected solar radiation during the months of snow melt indicate an earlier onset of the warm season by about 1 week compared to the beginning of the observations. The supplementary dataset of Ny-Ålesund surface radiation measurements (available at http://dx.doi.org/10.1594/PANGAEA.150000) provides a valuable data source for the validation of satellite instruments and climate models.