Published in

American Physical Society, Physical review B, 1(85)

DOI: 10.1103/physrevb.85.014520

Links

Tools

Export citation

Search in Google Scholar

Conventional superconductivity in SrPd2Ge2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The electronic structure of SrPd2Ge2 single crystals is studied by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and band structure calculations within the local-density approximation (LDA). The STS measurements show a single s-wave superconducting energy gap Δ(0) = 0.5 meV. The photon-energy dependence of the observed Fermi surface reveals a strongly three-dimensional character of the corresponding electronic bands. By comparing the experimentally measured and calculated Fermi velocities a renormalization factor of 0.95 is obtained, which is much smaller than typical values reported in Fe-based superconductors. We ascribe such an unusually low band renormalization to the different orbital character of the conduction electrons and, using ARPES and STS data, argue that SrPd2Ge2 is likely to be a conventional superconductor, which makes it clearly distinct from isostructural iron pnictide superconductors of the “122” family.