Published in

Wiley, ChemMedChem, 2(11), p. 190-198, 2015

DOI: 10.1002/cmdc.201500196

Links

Tools

Export citation

Search in Google Scholar

Lipophilic Muramyl Dipeptide-Antigen Conjugates as Immunostimulating Agents

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Muramyl dipeptide (MDP) is the smallest peptidoglycan fragment capable of triggering the innate immune system through interaction with the intracellular NOD2 receptor. To develop synthetic vaccine modalities composed of an antigenic entity (typically a small peptide) and a molecular adjuvant with well-defined activity, we previously assembled covalent MDP-antigen conjugates. Although these were found to be capable of stimulating the NOD2 receptor and were processed by dendritic cells (DCs) leading to effective antigen presentation, DC maturation-required for an apt immune response-could not be achieved with these conjugates. To improve the efficacy of these vaccine modalities, we equipped the MDP moiety with lipophilic tails, well-known modifications to enhance the immune-stimulatory activity of MDPs. Herein we report the design and synthesis of a lipophilic MDP-antigen conjugate and show that it is a promising vaccine modality capable of stimulating the NOD2 receptor, maturing DCs, and delivering antigen cargo into the MHC-I cross-presentation pathway.