Published in

Humana Press, Methods in Molecular Biology, p. 125-148, 2014

DOI: 10.1007/978-1-4939-1142-4_10

Links

Tools

Export citation

Search in Google Scholar

SILAC-Based Temporal Phosphoproteomics

Book chapter published in 2014 by Chiara Francavilla, Omid Hekmat, Blagoy Blagoev ORCID, Jesper V. Olsen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In recent years, thanks to advances in Mass Spectrometry (MS)-based quantitative proteomics, studies on signaling pathways have moved from a detailed description of individual components to system-wide analysis of entire signaling cascades, also providing spatio-temporal views of intracellular pathways. Quantitative proteomics that combines stable isotope labeling by amino acid in cell culture (SILAC) with enrichment strategies for post-translational modification-bearing peptides and high-performance tandem mass spectrometry represents a powerful and unbiased approach to monitor dynamic signaling events. Here we provide an optimized SILAC-based proteomic workflow to analyze temporal changes in phosphoproteomes, which involve a generic three step enrichment protocol for phosphopeptides. SILAC-labeled peptides from digested whole cell lysates are as a first step enriched for phosphorylated tyrosines by immunoaffinity and then further enriched for phosphorylated serine/threonine peptides by strong cation exchange in combination with titanium dioxide-beads chromatography. Analysis of enriched peptides on Orbitrap-based MS results in comprehensive and accurate reconstruction of temporal changes of signaling networks.