Published in

Elsevier, NeuroImage, 3(47), p. 914-921

DOI: 10.1016/j.neuroimage.2009.04.072

Links

Tools

Export citation

Search in Google Scholar

Is the brain the essential in hypertension?

Journal article published in 2009 by J. Richard Jennings, Ydwine Zanstra
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The brain is typically considered a target for late stage hypertensive disease due to the high prevalence of stroke among hypertensive patients. Research is reviewed, however, that suggests that the brain is implicated in the initiation of high blood pressure and is itself altered by early disease processes. A substantial literature establishes neural control of the vasculature and kidney as candidate etiological factors in essential hypertension. This research, largely done in animals, is now supplemented by behavioral and brain imaging studies in humans. This review suggests that the brain and vasculature may be independently and concurrently targeted by the factors inducing essential hypertension. Early stage hypertension is associated with cognitive deficits, altered cerebral blood flow support for cognitive processing, and decreased grey matter in specific cortical regions. Pharmacological reversal of hypertension is less successful in patients with premature brain aging and fails to reverse either the progression of functional or structural changes within the cerebral cortex. Furthermore, magnetic resonance imaging Blood Oxygen Level-Dependent (BOLD) responses during psychological challenge differ between normotensive individuals at risk and those not at risk for hypertension because of their exaggerated blood pressure responses to psychological challenge. Further examination of mechanisms of action and early influences of the disease on the brain are required to understand the pathophysiological mechanisms having concurrent influences on the brain and the peripheral vasculature.