Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Methods, 8(9), p. 840-846, 2012

DOI: 10.1038/nmeth.2078

Links

Tools

Export citation

Search in Google Scholar

High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We introduce two large-scale resources for functional analysis of microRNA—a decoy/sponge library for inhibiting microRNA function and a sensor library for monitoring microRNA activity. To take advantage of the sensor library, we developed a high-throughput assay called Sensor-seq, which permits the activity of hundreds of microRNAs to be quantified simultaneously. Using this approach, we show that only the most abundant microRNAs within a cell mediate significant target suppression. Over 60% of detected microRNAs had no discernible activity, indicating that the functional ‘miRNome’ of a cell is considerably smaller than currently inferred from profiling studies. Moreover, some highly expressed microRNAs exhibit relatively weak activity, which in some cases correlated with a high target-to-microRNA ratio or increased nuclear localization of the microRNA. Finally, we show that the microRNA decoy library can be used for pooled loss-of-function studies. These tools provide valuable resources for studying microRNA biology and for microRNA-based therapeutics.