Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 1(6), p. 104-112, 2011

DOI: 10.1038/ismej.2011.81

Links

Tools

Export citation

Search in Google Scholar

Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45′N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5′-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry.