Published in

Wiley, Advanced Materials, 12(28), p. 2421-2426, 2016

DOI: 10.1002/adma.201505020

Links

Tools

Export citation

Search in Google Scholar

Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Single particle spectroscopy in the form of three-dimensional optical manipulation of an upconverting nanoparticle is here used for non-invasive thermal sensing at the cellular level. In particular, a single infrared 980 nm laser beam is used as a three-dimensional optical tweezer and, simultaneously, as an optical excitation source for a single NaYF4:Er3+,Yb3+ upconverting particle. Real time analysis of the thermosensitive green emission of Er3+ ions obtained after Yb3+ excitation provides thermal sensing during optical manipulation. Thus, three-dimensional particle scanning allows for the measurement of thermal gradients in the surroundings of individual cancer cells subjected to a plasmonic-mediated photothermal therapy. It is found that such thermal gradients extends for distances larger than 10 microns, avoiding real single cell photothermal treatments under in vitro conditions. This work introduces to the scientific community a novel and simple approach for high resolution thermal sensing at the cellular level that could constitute a powerful tool for a better understanding of cell dynamics during thermal treatments