Published in

SAGE Publications, International Journal of Engine Research

DOI: 10.1177/1468087414561275

Links

Tools

Export citation

Search in Google Scholar

Application of jet propellant-8 to premixed charge ignition combustion in a single-cylinder diesel engine

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aviation fuel, jet propellant-8, was applied to premixed charge ignition combustion as well as conventional combustion in a single-cylinder diesel engine and was compared with diesel fuel. The engine performance and emissions were tested with and without exhaust gas recirculation under two operating conditions. The liquid- and vapor-phase penetration of diesel fuel and jet propellant-8 were also compared by Mie-scattering and Schlieren method under evaporating conditions using a constant-volume chamber. It was observed that jet propellant-8 exhibited slightly longer vapor-phase penetration and evidently shorter liquid-phase penetration compared with diesel fuel due to the lower distillation temperature and density of jet propellant-8. However, despite the faster evaporation rate of jet propellant-8, it was found that the ignition delay with jet propellant-8 was 2–3 crank angle degrees longer than that with diesel fuel due to its lower cetane number. This result was consistent for all operating conditions and combustion regimes. Jet propellant-8 also showed lower nitrogen oxides (NOx) and smoke emissions for both combustion regimes under the low-load condition because of locally leaner air–fuel mixture caused by longer ignition delay, higher volatility, and lower aromatic contents. As the engine load increased, jet propellant-8 emitted more NOx under conventional combustion regime due to the more vigorous premixed burn phase compared with diesel fuel. With exhaust gas recirculation, jet propellant-8 showed an improved trade-off relationship between NOx and smoke emissions for both combustion regimes due to its better evaporation characteristics and lower aromatic contents. Premixed charge ignition combustion with jet propellant-8 emitted lower smoke than conventional combustion with jet propellant-8 under near-zero NOx level.