Published in

American Institute of Physics, Applied Physics Letters, 26(105), p. 261101

DOI: 10.1063/1.4904909

Links

Tools

Export citation

Search in Google Scholar

Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The negatively-charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ~24,000 and mode volume V ~ $0.47({λ}/n)^{3}$ as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ~20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters. ; Comment: 13 pages, 3 figures