American Physical Society, Physical review B, 3(88), 2013
DOI: 10.1103/physrevb.88.035115
Full text: Download
A burning question in the emerging field of spin-orbit driven insulating iridates, such as Na2IrO3 and Li2IrO3 is whether the observed insulating state should be classified as a Mott-Hubbard insulator derived from a half-filled relativistic j_eff=1/2 band or as a band insulator where the gap is assisted by spin-orbit interaction, or Coulomb correlations, or both. The difference between these two interpretations is that only for the former, strong spin-orbit coupling (lambda >~ W, where W is the band width) is essential. We have synthesized the isostructural and isoelectronic Li2RhO3 and report its electrical resistivity and magnetic susceptibility. Remarkably it shows insulating behavior together with fluctuating effective S=1/2 moments, similar to Na2IrO3 and Li2IrO3, although in Rh4+ (4d5) the spin-orbit coupling is greatly reduced. We show that this behavior has non-relativistic one-electron origin (although Coulomb correlations assist in opening the gap), and can be traced down to formation of quasi-molecular orbitals, similar to those in Na2IrO3. ; Comment: 7 pages, 7 figures