Published in

Elsevier, International Immunopharmacology, 8(10), p. 906-912, 2010

DOI: 10.1016/j.intimp.2010.05.001

Links

Tools

Export citation

Search in Google Scholar

Inactivation of IκB-kinase-β dependent genes in airway epithelium reduces tobacco smoke induced acute airway inflammation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have examined the role of NF-kappaB regulated genes in airway epithelium in mediating tobacco smoke induced airway inflammation in studies of CC10-Cre(tg)/Ikk beta(Delta/Delta) mice in which NF-kappaB signaling through I kappaB-kinase-beta (IKK-beta) is selectively ablated in epithelial cells in the airway. CC10-Cre(tg)/Ikk beta(Delta/Delta) mice exposed to tobacco smoke for seven days had a significant decrease in the number of BAL cells (total cells, neutrophils, and macrophages) as well as significantly reduced numbers of peribronchial cells (F4/80+ and myeloperoxidase+) compared to tobacco exposed WT mice. In addition to the reduction in peribronchial cells, CC10-Cre(tg)/Ikk beta(Delta/Delta) mice exposed to tobacco smoke had a significant decrease in the number of macrophages and neutrophils in the alveolar space suggesting that inactivation of NF-kappaB in the airway epithelium influenced the number of neutrophils and macrophages recruited to the alveolus. Levels of the NF-kappaB regulated chemokines KC and MCP-1 were significantly reduced in lungs of tobacco smoke exposed CC10-Cre(tg)/Ikk beta(Delta/Delta) mice compared to tobacco exposed WT mice. In contrast, there was no significant difference in levels of NF-kappaB regulated MIP-1 alpha between CC10-Cre(tg)/Ikk beta(Delta/Delta) and WT mice. Lung sections of tobacco smoke exposed CC10-Cre(tg)/Ikk beta(Delta/Delta) mice immunostained with KC or MCP-1 antibodies demonstrated reduced expression of these chemokines in the airway epithelium, but not in alveolar epithelium. Overall, these studies demonstrate an important role for NF-kappaB regulated genes in airway epithelium in contributing to acute tobacco smoke induced airway inflammation not only in the peribronchial space but also in the alveolar space.