Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Neurophysiology, 2(110), p. 481-494, 2013

DOI: 10.1152/jn.00105.2013

Links

Tools

Export citation

Search in Google Scholar

Compressive spatial summation in human visual cortex

Journal article published in 2013 by Kendrick N. Kay, Jonathan Winawer, Aviv Mezer ORCID, Brian A. Wandell
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neurons within a small (a few cubic millimeters) region of visual cortex respond to stimuli within a restricted region of the visual field. Previous studies have characterized the population response of such neurons using a model that sums contrast linearly across the visual field. In this study, we tested linear spatial summation of population responses using blood oxygenation level-dependent (BOLD) functional MRI. We measured BOLD responses to a systematic set of contrast patterns and discovered systematic deviation from linearity: the data are more accurately explained by a model in which a compressive static nonlinearity is applied after linear spatial summation. We found that the nonlinearity is present in early visual areas (e.g., V1, V2) and grows more pronounced in relatively anterior extrastriate areas (e.g., LO-2, VO-2). We then analyzed the effect of compressive spatial summation in terms of changes in the position and size of a viewed object. Compressive spatial summation is consistent with tolerance to changes in position and size, an important characteristic of object representation.